7 research outputs found

    Thermally conductive support structure

    Get PDF
    A structure for supporting and at least transferring heat energy away from at least a first heat source interconnected thereto is disclosed. In one embodiment, the structure includes a deck member having a plurality of layers of thermally conductive fibers packed within a matrix material. Fibers of at least a first layer are orientable to transfer heat energy toward at least a first sidewall of the deck member, and fibers of at least a second layer are orientable about .+-.45.degree. relative to the fibers of the first layer to enhance the structural strength of the deck member. In another embodiment, fibers of at least a first layer of thermally conductive fibers of the deck member are orientable to transfer heat energy from a first heat source to a second, cooler heat source, both of which are interconnectable to the deck member, such that the first and second heat sources operate at substantially uniform temperatures. In this embodiment, fibers of at least a second layer of thermally conductive fibers are orientable about .+-.45.degree. relative to the fibers of the first layer to enhance the structural strength of the deck member. Fibers of at least a third layer of thermally conductive fibers are orientable substantially orthogonally relative to the fibers of the first layer to transfer heat energy away from at least the first heat source to at least a first sidewall of the deck member

    Superfluid Helium Tanker (SFHT) study

    Get PDF
    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997

    Literatur

    No full text
    corecore